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Abstract. Vertically resolved thermodynamic cloud phase classifications are essential for studies of atmospheric cloud and 11 

precipitation processes. The Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) 12 

THERMOCLDPHASE Value-Added Product (VAP) uses a multi-sensor approach to classify thermodynamic cloud phase by 13 

combining lidar backscatter and depolarization, radar reflectivity, Doppler velocity, spectral width, microwave radiometer-14 

derived liquid water path, and radiosonde temperature measurements. The measured voxels are classified as ice, snow, mixed-15 

phase, liquid (cloud water), drizzle, rain, and liq_driz (liquid+drizzle). We use this product as the ground truth to train three 16 

machine learning (ML) models to predict the thermodynamic cloud phase from multi-sensor remote sensing measurements 17 

taken at the ARM North Slope of Alaska (NSA) observatory: a random forest (RF), a multilayer perceptron (MLP), and a 18 

convolutional neural network (CNN) with a U-Net architecture. Evaluations against the outputs of the THERMOCLDPHASE 19 

VAP with one year of data show that the CNN outperforms the other two models, achieving the highest test accuracy, F1-20 

score, and mean Intersection over Union (IOU). Analysis of ML confidence scores shows ice, rain, and snow have higher 21 

confidence scores, followed by liquid, while mixed, drizzle, and liq_driz have lower scores. Feature importance analysis 22 

reveals that the mean Doppler velocity and vertically resolved temperature are the most influential datastreams for ML 23 

thermodynamic cloud phase predictions. The ML models’ generalization capacity is further evaluated by applying them at 24 

another Arctic ARM site in Norway using data taken during the ARM Cold-Air Outbreaks in the Marine Boundary Layer 25 

Experiment (COMBLE) field campaign. Finally, we evaluate the ML models’ response to simulated instrument outages and 26 

signal degradation. 27 
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1 Introduction 28 

Arctic clouds are one of the least understood elements of the Arctic climate system, but they play a significant role in regulating 29 

radiative energy fluxes at the surface, through the atmosphere, and at the top of the atmosphere (Cesana & Chepfer, 2012; 30 

Curry et al., 1996; Kay & L'Ecuyer, 2013; Kay et al., 2008; Shupe & Intrieri, 2004). One major factor in this uncertainty is the 31 

thermodynamic phase of clouds, which is crucial for understanding many cloud processes, including ice particle production, 32 

precipitation formation, and the evolution of the cloud life cycle. Ice particles and liquid droplets differ significantly in number, 33 

size, shape, fall velocity, and refractive index, leading to vastly different radiative properties for clouds with different 34 

thermodynamic structures (Shupe & Intrieri, 2004). Accurate thermodynamic cloud phase representations in climate models 35 

enhance the reliability of climate projections (Cesana et al., 2024). In addition, thermodynamic cloud phase classification is 36 

often a prerequisite for retrieving cloud properties from remote-sensing data, as most retrieval algorithms are designed for 37 

specific thermodynamic cloud phases and types (Shupe et al., 2015). 38 

Thermodynamic cloud phase can be determined using either aircraft in situ measurements (McFarquhar et al., 2011; Verlinde 39 

et al., 2007; Wendisch et al., 2019) or remote sensing observations (Avery et al., 2020; Barker et al., 2008; Hogan et al., 2003; 40 

Shupe, 2007; Turner et al., 2003). Aircraft in situ measurements use particle images from onboard probes to identify 41 

thermodynamic cloud phase based on the shape and size of cloud particles. While in situ measurements offer thermodynamic 42 

cloud phase identification, it is challenging to gather large aircraft datasets under diverse environmental conditions, and these 43 

measurements cannot provide routine or continuous daily data. Remote sensing observations, however, offer long-term 44 

continuous thermodynamic cloud phase identification. Space-borne remote sensing, in particular, enables global-scale 45 

thermodynamic cloud phase classification, which can effectively constrain global climate models (Cesana & Chepfer, 2013; 46 

Tan et al., 2016). High-resolution ground-based remote sensing observations allow for detailed thermodynamic cloud 47 

classification, supporting studies of cloud processes, and the validation of high-resolution cloud-resolving model simulations 48 

(Fan et al., 2011; Kalesse et al., 2016).  49 

The Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) user facility deploys advanced remote sensing 50 

instruments in climate-critical locations to monitor atmospheric states and processes. To address the need for accurate 51 

thermodynamic cloud phase identification, ARM developed the Thermodynamic Cloud Phase (THERMOCLDPHASE) 52 

Value-Added Product (VAP) (Zhang & Levin, 2024). Using the multi-sensor approach developed by Shupe (2007), the 53 

THERMOCLDPHASE VAP combines data from active remote-sensing lidars, radars, microwave radiometers, and 54 

radiosondes to determine vertically resolved thermodynamic cloud phase at ARM sites. THERMOCLDPHASE data are 55 

available through ARM Data Discovery for ARM’s North Slope of Alaska (NSA) atmospheric observatory at Utqiagvik, 56 

Alaska from 2018 to 2022, as well as several other ARM observatories across the world ("ARM Data Discovery," 2025). 57 

Threshold-based algorithms for determining the thermodynamic cloud phase, such as those used in the THERMOCLDPHASE 58 

VAP, have two major limitations. First, standard algorithms are static and do not improve with additional data or generalize 59 
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to new regions. For ARM to apply the Shupe (2007) algorithm to sites other than the Arctic, where it was originally developed, 60 

fine-tuning these thresholds and rigorous quality testing is necessary before the data product can be used. This limits how 61 

quickly the product can be made available to scientists. Second, the realities of instrument deployment to harsh, remote 62 

environments mean that instrumentation can go offline periodically, and most conventional algorithms are not able to adapt 63 

when data inputs are missing. For ARM’s thermodynamic cloud phase product, the thermodynamic cloud phase cannot be 64 

accurately classified when one or more input datastreams are missing. 65 

Machine learning methods, in combination with conventional methods, can improve thermodynamic cloud phase 66 

classification. ML algorithms’ performance generally improves as they are trained with more data, and they can be trained to 67 

adapt to data issues such as low quality or missing inputs. There are multiple years of ARM’s THERMOCLDPHASE VAP 68 

data from the NSA site, and the product contains both the VAP and the individual datastreams used to derive it, making it an 69 

excellent source of training data for the ML algorithms. 70 

In this work, we develop three machine learning models with increasing complexity: a random forest (RF), a multi-layer 71 

perceptron (MLP) neural network, and a convolutional neural network (CNN) with a U-Net architecture for classifying 72 

thermodynamic cloud phase. We use the ARM THERMOCLDPHASE VAP from the NSA site as ground truth for training. 73 

In addition to evaluation of model performance on NSA data, we evaluate the ML models’ generalizability to another ARM 74 

site (ANX) and test each model’s robustness against simulated instrument data loss.  75 

2 Methods 76 

2.1 Datasets and Data Pre-processing 77 

This study leverages the THERMOCLDPHASE VAP, produced at the ARM NSA atmospheric observatory 78 

(https://www.arm.gov/capabilities/science-data-products/vaps/thermocloudphase), as the training data. The ARM NSA site 79 

(71°19′N, 156°36′W) is located on the northern Alaskan coastline (Verlinde et al., 2016). It experiences a variety of cloud 80 

types throughout the year, with predominantly ice clouds in winter, mixed-phase clouds in spring and fall, and liquid clouds 81 

in summer (Shupe, 2011). The observatory is equipped with advanced atmospheric observing instruments, including cloud 82 

radars, depolarization lidars, radiometers, and radiosondes. These instruments provide comprehensive data for describing cloud 83 

and radiative processes at high latitudes. These data have been used to improve the representation of high-latitude cloud and 84 

radiation processes in Earth system models (Balmes et al., 2023; Shupe et al., 2015; Zheng et al., 2023). 85 

The classification algorithm used to create the THERMOCLDPHASE VAP exploits the complementary strengths of cloud 86 

radar, depolarization lidar, microwave radiometer, and temperature soundings to classify cloud hydrometeors observed in the 87 

vertical column as ice, snow, mixed-phase, liquid, drizzle, rain, and liq_driz (liquid+drizzle). The liq_driz class represents 88 

cases with liquid cloud and drizzle in the same volume, whereas the drizzle class indicates drizzle that has fallen below the 89 

cloud. In short, lidar backscatter is sensitive to small cloud droplets with high concentrations, while lidar depolarization ratio 90 
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can distinguish between spherical (i.e., liquid) and irregularly shaped particles such as ice crystals and snow. Radar reflectivity 91 

is dominated by large particles such as ice particles, snow, or raindrops, while higher-order radar moments provide more 92 

detailed information on, for example, particle fall speed. Supplemental data, such as liquid water path from the microwave 93 

radiometer and temperature profiles from radiosondes, can be used to further refine thermodynamic phase identification. 94 

Combining these complementary observations provides a reliable approach to identifying cloud thermodynamic phases. An 95 

“unknown” label is assigned in cases when the thermodynamic phase of the hydrometeor cannot be identified due to missing 96 

input datasets or when the determined thermodynamic cloud phase is inconsistent with our understanding of cloud structures 97 

and physics based on past studies. The VAP also includes a “clear” classification when no hydrometeors are present. A full 98 

description of the method is found in Shupe (2007). While Shupe (2007) used lidar and radar measurements to distinguish 99 

between clear and cloudy pixels, the THERMOCLDPHASE VAP applies the phase classification algorithm to cloudy pixels 100 

identified by the ARM  Active Remote Sensing of CLouds (ARSCL) VAP (https://www.arm.gov/data/science-data-101 

products/vaps/arscl) (Clothiaux et al., 2001). The ARSCL VAP provides cloud boundaries for up to 10 cloud layers by 102 

combining radar, lidar, and radiometer measurements. 103 

The THERMOCLDPHASE VAP reads-in micropulse lidar (MPL) or high-spectral-resolution lidar (HSRL) backscatter and 104 

depolarization ratio data from the Micropulse Lidar Cloud Mask (MPLCMASK) VAP (https://www.arm.gov/data/science-105 

data-products/vaps/mplcmask) (Flynn et al., 2023) or HSRL data (Goldsmith 2016), respectively; radar reflectivity, mean 106 

Doppler velocity, and Doppler spectral width data from the ARSCL VAP; liquid water path data from the Microwave 107 

Radiometer Retrievals (MWRRET) VAP (https://www.arm.gov/data/science-data-products/vaps/mwrret) (Gaustad et al., 108 

2011); and temperature data from the Interpolated Sonde (INTERPSONDE) VAP (https://www.arm.gov/data/science-data-109 

products/vaps/interpsonde) (Fairless et al., 2021). The HSRL system is deployed at only a few ARM observatories and ARM 110 

Mobile Facility (AMF) field campaigns. When HSRL data are available, the THERMOCLDPHASE VAP uses the HSRL 111 

backscatter coefficients and LDR thresholds, as outlined in Shupe (2007), to distinguish between liquid and ice. The MPL 112 

system, on the other hand, is deployed at all ARM fixed atmospheric observatories and nearly all AMF field campaigns. The 113 

THERMOCLDPHASE VAP uses the gradient of MPL backscatter (MPLGR), following Wang et al. (2001) to distinguish 114 

between liquid and ice. We employ the thermodynamic cloud phase classification data that utilizes the MPLGR method to 115 

train ML models so that the trained models can be readily extended to other ARM observatories. Ultimately, the 116 

THERMOCLDPHASE VAP then outputs seven hydrometeor phase classifications at 30-meter vertical and 30-second 117 

temporal resolutions. The VAP and the datasets used to produce it are publicly available through ARM’s Data Discovery tool 118 

(https://adc.arm.gov/discovery/).  119 

 120 

An example of multi-sensor remote sensing measurements and thermodynamic cloud phase classification from the 121 

THERMOCLDPHASE VAP on August 15, 2021, at the ARM NSA observatory is shown in Figure 1. The day started with a 122 

deep precipitating system with some embedded convection before 9:00 UTC, with cloud tops reaching up to 8 km and 123 
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temperatures near the cloud top close to -40 ℃. KAZR radar signals can penetrate through the cloud and provide measurements 124 

of the cloud structure. Increased radar reflectivity (Ze), downward motion (indicated by negative mean Doppler velocity, 125 

MDV), and Doppler spectral width (W) around 1 km suggest a transition from cold to warm precipitation (Figure 1c, 1d, and 126 

1e). Furthermore, the radar bright band is observable at ~ 1km when large falling ice crystals start to become coated with 127 

melted liquid water (Figure 1c). Lidar signals, however, were quickly attenuated by warm raindrops near the surface, as shown 128 

in Figure 1a and 1b. Large liquid water path (LWP) retrieved from the microwave radiometer and warm temperatures near the 129 

surface provide support for this identification (Figure 1f and 1g). As shown in Figure 1g, the THERMOCLDPHASE VAP 130 

identifies ice and mixed-phase regions in the middle and upper portions of the cloud system, with snow pixels occasionally 131 

present in the middle layers. Below approximately 1 km, warm cloud phases and precipitation, including liquid, drizzle, and 132 

rain, are observed. Two additional, relatively shallower cloud systems with similar cloud phase structures were observed 133 

between 10:00 and 13:00 UTC and 15:00 and 19:00 UTC. Interestingly, two mid-level thin liquid layer clouds were observed 134 

after each of the first two systems. However, due to warmer cloud top temperatures, a lack of ice nucleating particles (INPs), 135 

or other processes, these liquid cloud layers did not produce ice or produced ice that was immediately sublimated right below 136 

cloud base. Further cloud model simulations could provide insights into these processes (Solomon et al., 2018; Solomon et al., 137 

2011).  After 18 UTC, a typical polar low-level stratocumulus cloud with liquid droplets at the top and mixed-phase pixels 138 

below is observed. Note that low radar reflectivity that appears to be detached from the cloud below between 20:00 and 22:00 139 

UTC could be artifacts caused by KAZR moderate sensitivity mode (MD) sidelobe impacts (Silber et al., 2018). Accurately 140 

detecting and removing these radar artifacts are being investigated by the ARM radar data team (Ya-Chein Feng, personal 141 

communication, January 2025).  142 
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 143 

Figure 1. An example of multi-sensor remote sensing measurements of clouds and the thermodynamic cloud phase 144 

classification from the THERMOCLDPHASE VAP on August 15th, 2021, at the ARM NSA site. Panels from top to bottom 145 

are: a) MPL attenuated backscatter (MPL β); b) MPL linear depolarization ratio (MPL LDR); c) Ka-band ARM zenith radar 146 

(KAZR) radar equivalent reflectivity factor (Ze); d) KAZR mean Doppler velocity (MDV); e) KAZR Doppler spectral width 147 

(W), f) liquid water path (LWP) from the MWRRET VAP; and g) the thermodynamic cloud phase classification from the 148 
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THERMOCLDPHASE VAP. Negative MDV values represent downward motions toward the surface. The dashed lines in g) 149 

are isothermal lines based on the ARM Interpolated Sonde (INTERPSONDE) VAP.   150 

The various input fields for the VAP are listed in Table 1. These inputs have different units, can differ in scale by orders of 151 

magnitude, and may include extreme outlier values. To facilitate training of the neural networks, which can be sensitive to 152 

input scaling, each input was range limited and then re-scaled to an approximate range between -2 and 2. The range limiting 153 

was chosen to only cut off erroneous or missing datapoints (the ARM datasets assign missing data a value of -9999), and 154 

restricts the inputs to a physically plausible range. The scaling values were determined manually based on histograms of the 155 

training dataset and are detailed in Table 1. Additionally, the MPL backscatter and MWRRET LWP variables were log-scaled 156 

because these observations span several orders of magnitude. Training data were limited to periods where all instruments were 157 

operational, and instances where the VAP output was labeled as 'unknown' were excluded from the training process. 158 

Table 1. The formulas used to normalize the input data for the MLP and CNN models.   159 

Variable Units Lower 

Bound 

Upper Bound Full Normalization Formula 

MPL backscatter (MPL ) Counts/s 1e-8 1e4 (log(clip(x, 1e-8, 1e4)) + 6) / 8 

MPL linear depolarization ratio (MPL 

Dep) 

NA 0 1 clip(x, 0, 1) * 2 - 1 

Radar reflectivity (Ze) dBz -70 70 (clip(x, -70, 70) + 20) / 30 

Radar mean Doppler velocity (MDV) m/s -8 8 clip(x + 0.5, -8, 8) / 2 

Radar spectral width (W) m/s -1 4 clip(x * 5, -1, 4) - 0.5 

Radar linear depolarization ratio (Radar 

Dep) 

NA -20 20 clip(x + 20, -20, 20) / 6 

MWRRET liquid water path (LWP) g/m2 0.1 2000 (log(clip(x, 0.1, 2000)) - 3) / 2 

Temperature profile (T) oC -100 50 (clip(x, -100, 50) + 30) / 30 

 160 

2.2 Machine Learning Models 161 

2.2.1 Random Forest 162 

A random forest (RF) is a meta estimator that fits multiple decision tree classifiers using a best-split strategy on various sub-163 

samples of the dataset. The individual tree’s predictions are then averaged to improve predictive accuracy and control over-164 

fitting (Breiman 2001). The RF model uses an ensemble of 100 decision trees and operates on individual pixels (1.6 million 165 
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samples), unlike the CNN, which processes time-height images. We used the Scikit learn library (Pedregosa 2011), to train a 166 

random forest classifier, which took less than 2 hours to train using CPUs. The RF was trained using a standard scaler to re-167 

scale the input variables and excluding any pixels marked as “unknown” in the VAP. Ninety RF configurations were tested, 168 

with the best model determined by considering training accuracy, validation accuracy, and validation F1-score (precision) (Eq. 169 

1).  Categorical accuracy evaluates the overall percentage of correct predictions but can be biased in imbalance datasets. 170 

Precision measures the proportion of correct positive predictions out of all positive predictions made. A higher precision 171 

indicates fewer false positive predictions. Recall evaluates the proportion of actual positive instances correctly identified. A 172 

higher recall indicates fewer false negative predictions. F1-score is the harmonic mean of precision and recall, which is defined 173 

as: 174 

F1 = 2TP/(2TP + FN + FP)                                                                             (1) 175 

F1-score provides a balanced measure of both precision and recall. The best model used 40 trees with 105 samples used to train 176 

each tree and was trained with a maximum of 2 features used for each split, a maximum depth of 20, and no restriction on the 177 

maximum number of leaf nodes.  178 

2.2.2 Neural Network 179 

We also trained a conventional multi-layer perceptron (MLP)-style neural network. The MLP is a supervised learning 180 

algorithm that can learn a non-linear, continuous, and differentiable mapping between the input data and the target 181 

classifications (Bishop 2006). The MLP takes the 8 normalized input values (Table 1), has 5 hidden layers with ReLU (rectified 182 

linear unit) activation functions and 100 neurons each, and a 7-neuron output layer that applies a softmax activation function. 183 

Like the RF model, the MLP operates pixel-by-pixel to generate phase classifications. The MLP was also trained using the 184 

Scikit-learn library (Pedregosa et al., 2011) with the same dataset used to train the RF, which was standardized as well. Forty-185 

one variants of the MLP were tested with either a robust scalar, quantile transformer, or standard scalar applied directly to the 186 

data. The best was trained using the Adam optimizer with an adaptive learning rate initialized at 0.001, a batch size of 200, 187 

and a categorical cross entropy loss function. Training was terminated after 134 epochs due to early stopping. The validation 188 

fraction was 0.2. 189 

2.2.3 Convolutional Neural Network 190 

Deep convolutional neural networks (CNNs) are powerful machine learning models originally developed for computer vision 191 

and image processing tasks (Heaton, 2018; Krizhevsky et al., 2017; LeCun et al., 1998). CNNs learn convolutional kernels 192 

that can efficiently represent information about spatial structures in their input fields and are translationally equivariant models, 193 

making them optimal for image-recognition and segmentation tasks. Both RFs and CNNs have demonstrated effectiveness in 194 

labeling radar and lidar data for the classification of radial velocity and precipitating hydrometeors (Lu & Kumar, 2019; 195 

Veillette et al., 2023). Ronneberger et al. (Ronneberger et al., 2015) introduced the “U-Net,” a CNN architecture designed for 196 
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image segmentation that maps an input image to pixel-level class labels, and several improved, albeit more complex, variants 197 

have been developed since its introduction (Huang et al., 2020; Zhou et al., 2018). U-Net and its variants are broadly applicable 198 

to both classification- and regression-style image-to-image mapping problems and have now been adapted for a wide range of 199 

use cases in the atmospheric sciences (Galea et al., 2024; Geiss & Hardin, 2021; Lagerquist et al., 2023; Sha et al., 2020; Weyn 200 

et al., 2021; Wieland et al., 2019). Here, we use a CNN similar to the original U-Net that has been modified for the 201 

thermodynamic cloud and precipitation phase retrieval task. The U-Net was trained to ingest inputs of size 128x384x8 and 202 

produce a 128x384 pixel-level phase classification mask. The 128x384x8 input shape corresponds to samples that are 1 hour 203 

in duration, 12 km in height, and have 8 input fields, respectively. The U-Net was trained using the Adam optimizer with an 204 

initial learning rate of 0.001, a batch size of 16, and categorical cross-entropy loss. Training was terminated when mean 205 

Intersection Over Union (IOU) reached a maximum value after epoch 10. IOU is defined per-class as: 206 

IOU = TP/(TP+FN+FP),                                        (2) 207 

Where TP, FN, and FP represent true positives, false negatives, and false positives, respectively. The mean IOU is calculated 208 

by averaging the IOU of each class and is not biased by the class imbalance. 209 

 210 

Figure 2. An illustration of the most effective U-Net architecture tested, showcasing both its encoding and decoding paths 211 

along with their channel-dimensions. Given 2-dimensional 8-channel inputs 128x384x8, where the 8 channels are the variables 212 

in Table 1 and a cloud mask, the model produces a 128x384x8 output, where each channel represents the softmax probability 213 

of a pixel belonging to one of the eight cloud phase classes. 214 

An ablation study was used to determine the optimal U-Net design. This involved altering one design choice at a time, re-215 

training the model, and evaluating the model’s performance on the validation data (evaluating on cloudy pixels only, no clear 216 
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sky). We tested cases with/without dropout layers, channel-wise dropout layers (applied only to the input tensor to simulate 217 

instrument dropouts), and batch-normalization layers. We also ran experiments varying the number of convolutional layers in 218 

each block, the number of channels in the convolutional layers, the type of activation functions, and the class weights used 219 

during training (Ioffe & Szegedy, 2015; Srivastava et al., 2014). During the ablation study, the U-Nets were evaluated using 220 

several metrics, including: categorical cross-entropy computed only on cloudy regions, training loss (categorical cross-entropy 221 

computed on all regions), mean IOU, and categorical accuracy. The categorical accuracy is averaged over all pixel 222 

classifications and, because of class imbalances, is more representative of model skill on the most common classes.  223 

Ultimately, the best U-Net configuration performed the best across all four metrics (lowest cloudy cross-entropy and all-sky 224 

cross-entropy and highest mean IOU score and categorical accuracy). The best results with the CNN were achieved with no 225 

channel-wise dropout layers, 2 convolutions in each block with the first followed by a dropout layer and the second followed 226 

by a batch normalization layer, 64, 64, 64, 128, 128, and 256 channels in the convolutional layers (where the ordering 227 

represents depth in the U-Net), leaky ReLU activation functions following the dropout and batch normalization layers, and no 228 

class weighting. These design choices resulted in a mean IOU score of 0.810 on the testing dataset, about 0.1 larger than the 229 

results of other model configurations we tested. This also resulted in a training loss of 0.018 which was 0.025 less than the 230 

other configurations. Notably, the U-Net configuration with channel-wise dropout layers was the second-best model, with an 231 

IOU score of 0.528 and training loss of 0.054. We note that these results are based on testing with complete inputs, however, 232 

when the U-Net is evaluated with simulated instrument outages the versions that were trained with channel-wise dropout 233 

applied to the inputs performed better (details in section 4). The results for all the ablation tests are documented in the Appendix 234 

1. 235 

2.3 Training Dataset 236 

Three years of data at the ARM NSA site, from 2018-2020, were used for training and validation and one year of data, from 237 

2021, was used for testing. For the MLP and RF models, a subset of 40,000 pixels from the three years of training data selected 238 

randomly were used for each cloud phase, and 10,000 pixels for each cloud phase for validation. For the CNN model, the first 239 

80% of data from 2018-2020 was used for training, and the remaining 20% for validation. The input fields were organized as 240 

3D arrays time x height x channel samples. The 7 unique cloud phase classifications produced by the THERMOCLDPHASE 241 

VAP were used as targets (the eighth was clear sky and was not used). The training time for each model is reported in Table 242 

2. The RF and MLP ran on CPUs while the CNN was trained using GPU. For this reason, the MLP and CNN train in 243 

comparable time, around ~110 minutes, though the CNN requires more computation. Meanwhile, the RF trains an order of 244 

magnitude faster, around 12 minutes. Inference time was inconsequential for all three models, which can each classify a day 245 

of data within a few seconds. 246 

The different methods of training set construction and input format used by each of the models creates different class 247 

imbalances and inherently complicates a direct comparison between models. For the RF and MLP models, an equal number 248 
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of samples of each of the cloud phase types were used to train and validate the models because they operate at a pixel level. 249 

Meanwhile, the CNN processes full time-height images, and its performance will be biased towards the most common pixel 250 

types (ice is the most common class observed at NSA). These challenges inherent to the different ML models, for example, 251 

the RF cannot be trained on the huge dataset the CNN uses due to computational constraints. Future the CNN could potentially 252 

be trained with a class-weighted loss function to ensure the model can identify the minority classes with greater accuracy, but 253 

class weighting does not have exactly the same effect as rebalancing the class frequency, particularly when the class imbalance 254 

is large. Balancing the class distribution ensures that the model receives gradients of similar scale from each class at 255 

approximately the same frequency throughout training. In contrast, altering the class weights results in predominantly small 256 

gradients from the majority classes, with occasional large gradients from minority classes. Therefore, achieving optimal 257 

performance is likely not as straightforward as selecting class weights that are inversely proportional to class frequency and 258 

will likely require fine-tuning of hyperparameters. Recent research has reported better results with combo loss (Taghanaki, 259 

2021) rather than weighting schemes in similar applications (Xie, 2024). 260 

 261 

3. Results 262 

Once the ML models were trained and validated, they were applied to one year of multi-sensor remote sensing measurements 263 

from 2021 to predict thermodynamic cloud phase (THERMOCLDPHASE-ML). The predicted phase classifications were 264 

compared to the VAP to evaluate the performance of the three ML models. 265 
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3.1 Applying Trained ML Models to Remote Sensing Measurements 266 

 267 

Figure 3. Thermodynamic cloud phase classifications from the three ML models and their comparisons against the 268 

THERMOCLDPHASE VAP on August 15, 2021, at the NSA site. a)-d) time-height plots of thermodynamic cloud phase 269 

classifications from the VAP, as well as from CNN, MLP, and RF model predictions, respectively; e)-g) confidence scores of 270 

thermodynamic cloud phase classification predictions from the three ML models; h)-k) histograms of thermodynamic cloud 271 

phase distributions; l)-n) normalized confusion matrices for each model. Figure 3a is identical to Figure 1g. 272 
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Figure 3 provides an example of thermodynamic cloud phase classifications from the three ML models compared with the 273 

THERMOCLDPHASE VAP on August 15, 2021, at the ARM NSA site. Among the predictions from the three ML models, 274 

the CNN demonstrates the best agreement with the THERMOCLDPHASE VAP, capturing nearly identical thermodynamic 275 

cloud phase structures. The MLP and RF models also show good agreement with the VAP but tend to overestimate mixed-276 

phase pixels in the ice-dominated high clouds between 0:00 –9:00 and 15:00 – 18:00 UTC and underestimate ice-phase pixels 277 

in the low-level clouds 15:00 – 23:00. Notably, the ML models provide confidence scores for their predictions, where higher 278 

scores indicate greater certainty. For the CNN and MLP models the raw model output is a softmax probability score for each 279 

phase class. For the RF confidence is calculated using the mean of predictions of trees in the RF. As shown in Figures 3e–3g, 280 

the CNN consistently generates higher confidence scores compared to the MLP and RF models. Regions with low confidence 281 

scores from the MLP and RF models often correspond to areas where these models misclassify thermodynamic cloud phases. 282 

In supplementary Figure S2 we plot confidence score bins versus accurate classifications for the 2021 data. The MLP and RF 283 

models accuracy linearly increases with higher confidence. For the CNN, for confidence scores above 40% accuracy linearly 284 

increases. There is a local maximum in accuracy for low confidence scores between 20-30%. For these cases, there are several 285 

orders of magnitude fewer data points, and the majority of correctly classified cases are ice. Because NSA is dominated by 286 

ice, classifying a non-clear-sky pixel as ice, even with low confidence, has a high chance of being correct for this dataset. At 287 

the pixel level of the thermodynamic cloud phase classification, Figure 3h indicates that the day was dominated (volume-wise) 288 

by ice-phase pixels, followed by liquid and mixed-phase pixels. Small amounts of snow, drizzle, and liq_driz pixels were also 289 

identified. The histogram plots of ML-predicted thermodynamic cloud phases in Figures 3i–3k show that the CNN produces 290 

a histogram closely matching the VAP. In contrast, the MLP and RF models tend to underestimate ice-phase pixels while 291 

overestimating liquid, mixed-phase, and liq_driz pixels.  292 

Figure 3l–3n provides a more detailed evaluation of thermodynamic cloud phase classifications from the three models through 293 

confusion matrices. The multi-class confusion matrix is a 7x7 grid with a row and column for each of the cloud phases. Each 294 

row represents the class reported by the VAP, and columns show the class predicted by ML. Correct predictions (true positives) 295 

are found along the diagonal, while misclassifications are in the off-diagonal elements. The sum of the columns ideally would 296 

equal one; a sum greater than one indicates an over classification of pixel type. On this day, liquid, mixed-phase, drizzle, and 297 

snow pixels were accurately identified by all three ML models, with accuracies exceeding 0.8. While the CNN model also 298 

accurately classified ice-phase pixels, the MLP and RF models frequently misclassified them as liquid or mixed-phase pixels. 299 

This case has pixel percentages above 5% for all cloud phase types and has high accuracy for all types, liq_driz and rain pixels 300 

included. In cases consisting of predominately ice clouds, relatively low accuracy for liq_driz and rain pixels are reported 301 

compared to other categories, with the CNN performing the worst, likely due to the extremely low occurrence of these pixel 302 

types and an overzealousness for predicting ice.                 303 

https://doi.org/10.5194/egusphere-2025-1501
Preprint. Discussion started: 7 May 2025
c© Author(s) 2025. CC BY 4.0 License.



14 

 

3.2 Analyses of ML Model Performance 304 

Given that the confidence score reflects the uncertainty of ML predictions, it is essential to analyse confidence scores and their 305 

relationship to accuracy for different thermodynamic cloud phases. Figure 4 presents a comprehensive statistical analysis of 306 

ML model confidence scores based on one year of data from 2021 at the NSA site. Overall, the confidence scores for 307 

thermodynamic cloud phase predictions peak near 100%, which is promising. Among the phases, predictions for ice, rain, and 308 

snow generally exhibit higher confidence scores across all three ML models. The ice phase, in particular, is reliably predicted—309 

especially by the CNN model—due to the availability of key information such as lidar backscatter and depolarization ratio, 310 

radar reflectivity, mean Doppler velocity and spectral width, and temperature (Shupe, 2007). The rain and snow phases, 311 

representing large particles in warm and cold conditions respectively, can be identified using key information such as radar 312 

reflectivity, mean Doppler velocity, and temperature. In contrast, the confidence scores for the “liquid” phase predictions are 313 

lower than those for the ice, rain, and snow phases. While the liquid phase can theoretically be reliably determined using lidar 314 

backscatter and depolarization ratio measurements, lidar signals are often quickly attenuated by low-level clouds, as illustrated 315 

in Figures 1a and 1b. Under such conditions, identifying liquid-phase pixels becomes challenging when relying solely on radar 316 

reflectivity and spectral width data (Silber et al., 2020). The mixed, drizzle, and liq_driz phases have even lower confidence 317 

scores, likely due to the inherent difficulties in extracting their distinguishing characteristics from available measurements. 318 

Among the three ML models, the CNN achieves the highest confidence scores across all thermodynamic cloud phases. The 319 

MLP model exhibits confidence scores comparable to the RF model for liquid, ice, mixed-phase, drizzle, and liq_driz phases 320 

but shows significantly lower confidence scores for the rain and snow phases.      321 

 322 

Figure 4: Probability Density Functions (PDFs) of confidence scores for thermodynamic cloud phase predictions from the 323 

three ML models using one year of data in 2021 at the NSA site.  324 
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Figure 5 shows the frequency of thermodynamic cloud phases at the NSA site as derived from the THERMOCLDPHASE 325 

VAP (labelled as 'VAP') and predictions from the three ML models using one year of testing data. Due primarily to the low 326 

polar temperatures, the NSA site is primarily dominated by the ice phase, followed by mixed, snow, and liquid phases. Warm 327 

phases, including drizzle, liq_driz, and rain, occur much less frequently and are mostly confined to the summer season (Shupe, 328 

2011). Comparing the ML predictions with the THERMOCLDPHASE VAP, the CNN closely matches the VAP's percentage 329 

distribution of thermodynamic cloud phases. In contrast, both the MLP and RF models predict lower percentages for the ice 330 

phase but higher percentages for the liquid, mixed, drizzle, and liq_driz phases, consistent with the case observed in Figures 331 

3h–3k.    332 

 333 

Figure 5. Percentage distributions of thermodynamic cloud phases from the THERMOCLDPHASE VAP (labeled as 'VAP') 334 

and predictions from the three ML models, based on one year of data from 2021 at the NSA site. 335 

Figure 6 presents the confusion matrices for the three models computed on the testing set. All models achieved over 80% 336 

accuracy for each cloud phase. The correct prediction percentages are close for the three ML models except that CNN has 337 

dramatically higher correct prediction for ice than the other two ML models. The CNN correctly identified ice 99% of the 338 

time. However, it occasionally misclassified liquid (8%), mixed (12%), and drizzle (1%) as ice. Because there are so few total 339 

instances of these phases (Figure 5), these misidentifications did not contribute much to reducing the overall accuracy of the 340 

model. However, to do a true comparison of the models to the best of our ability, we retrained the RF and MLP models on a 341 

random sample of 1.6 million pixels from the training dataset (using the same number of samples as the class-balanced training 342 

and same the inputs and normalizations used by the CNN) where the distributions of phases match closely with the overall 343 

phase distribution in the VAP. We examined how the “imbalanced” RF and MLP compared to the CNN (Figure S3). Focusing 344 

on the prediction of ice, the “balanced” RF and MLP models only misclassify liquid and mixed phase as ice 4% and 5% of the 345 
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time, respectively (Figure 6), while the “imbalanced” RF misclassifies liquid and mixed phase 25% and 22% of the time and 346 

the “imbalanced” MLP misclassifies them 22% and 21% of the time (Figure S3). Regarding the performance of the 347 

“imbalanced” models on the warm cloud phases, for drizzle, the CNN correctly identifies it 83% of the time, the imbalanced 348 

RF 86%, and the imbalanced MLP 81%. Compared to the balanced RF (90%) and MLP (88%), the imbalanced datasets 349 

perform worse on this metric.  350 

 351 

Figure 6. Confusion matrices computed on the 2021 NSA test dataset for (a) the CNN U-net model, (b) the MLP model, and 352 

(c) the RF model. The values are normalized by row, with the main diagonal showing true positive predictions and values off 353 

the main diagonal representing incorrect predictions. 354 

The performance of the three ML models was statistically evaluated using performance metrics listed in Table 2. These metrics 355 

include categorical accuracy, precision, recall, F1-score, and mean IOU (Eq.1). Here, we calculated the test accuracy as the 356 

percentage of pixels that match the VAP. Precision, recall, F1-score, and IOU are calculated for each phase class and reported 357 

as an average across the classes to reduce bias due to class imbalance. These metrics provide us with information to evaluate 358 

the performance of the three ML models in classifying thermodynamic cloud phases on a pixel-by-pixel level.  359 

 360 

Table 2.  Model performance metrics for the three machine learning models on the test dataset. 361 

Model Accuracy (%) Precision* Recall* f1-score* IoU* 

CNN 95.7 0.890 0.894 0.891 0.811 

MLP 85.7 0.760 0.905 0.815 0.704 

RF 87.2 0.789 0.913 0.837 0.735 

*using a macro average across classes 362 
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Table 2 shows that each model agreed with the THERMOCLDPHASE VAP in more than 85% of the utilized samples. The 363 

CNN achieved the highest test accuracy, F1-score, and mean IOU. The RF model performed slightly better than the MLP 364 

across these metrics but was significantly outperformed by the CNN. We hypothesize that the CNN's superior performance is 365 

due to its ability to evaluate the input time-height arrays (sections of data covering 11km in height by 1 hour) holistically rather 366 

than on a pixel-by-pixel basis. This approach allows the CNN to leverage information from neighbouring pixels and potentially 367 

assess larger-scale features, such as cloud shape, to improve classification accuracy.   368 

 369 

 370 

Figure 7. Vertically resolved ML model F1-scores and mean IOU scores, overlaid on a stacked histogram of the frequency of 371 

the cloud thermodynamic phase categories. A height bin size of 0.5 km is used to calculate the vertical profiles of mean IOU 372 

and F1-scores. Noise around 7.5-10km likely due to phase extinction and low pixel count. 373 
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Another aspect of evaluation is the performance of the models with respect to altitude. Figure 7 presents vertically resolved 374 

F1-scores and mean IOU scores for the ML models, overlaid on a stacked histogram of cloud thermodynamic phase category 375 

occurrences based on the VAP. Vertically resolved cloud phases converge toward ice-only clouds due to the extremely cold 376 

environment at higher altitudes. A peak in liquid phase occurrence is observed around ~1 km, which may be due to the 377 

prevalence of low-level polar stratiform mixed-phase clouds with a thin liquid layer at the top in the VAP (Silber et al., 2021; 378 

Zhang et al., 2010; Zhang et al., 2017), or due to the artifacts caused by KAZR MD mode (MD) sidelobe as discussed in 379 

section 2.1. The F1-scores and mean IOU are consistent with altitude until 8km when they start to increase across the three 380 

ML models, primarily due to the higher frequency of the ice phase at greater altitudes and the fact that the ice phase is more 381 

reliably predicted by all three ML models, as shown in Figure 4b. The CNN consistently achieves significantly higher F1-382 

scores than the MLP and RF models at altitudes below ~6 km. This is attributed to the greater diversity of thermodynamic 383 

cloud phases at lower altitudes and the CNN's strong performance across all phases, as shown in Figure 4. 384 

3.3 Input Feature Importance 385 

To identify which input features are most influential in determining cloud phase and to provide additional context for model 386 

performance, we calculate permutation feature importances (Breiman, 2001) for the three ML models by cloud phase class. 387 

We assess the permutation importance of an input feature defined as the model’s recall score for a specific phase category on 388 

the test set minus its recall score resulting from shuffling the values of the input feature (randomly reordering their positions 389 

within the column), which effectively removes its relationship with a specific phase category. A significant difference between 390 

recall scores indicates that the feature is important, while little or no change suggests the feature has minimal importance. This 391 

is done for each phase class, and the recall score is used specifically because it shows the reduction in the models’ ability to 392 

positively identify specific thermodynamic phases. This process is repeated for the CNN, MLP, and RF models, and is reported 393 

in Figure 8. 394 

Overall, input features from radar measurements (panels b, f, and j) including Ze, MDV, and W, and radiosonde temperature 395 

measurements (panels d, h, and l) are the most significant for classifying thermodynamic cloud phases across all the three 396 

models. In contrast, input features from lidar measurements (panels a, e, and i) and the MWRRET LWP (panels c, g, and k) 397 

are less influential, probably because lidar signals are quickly attenuated by clouds, and LWP provides only column-integrated 398 

information rather than detailed vertical profiles. Future work may want to explore the feature importance restricted to pixels 399 

that were observed by both radar and lidar to reevaluate the lidar importance.  400 
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 401 

Figure 8. Permutation feature importances of predicting thermodynamic cloud phases from: (a-d) the CNN Unet model; (e-h) 402 

the MLP model; and (i-l) the RF model. The abbreviations are defined in Figure 1. Radar Dep represents radar linear 403 

depolarization.  404 

Colors in Figure 8 represent different phase categories and enable feature importance to be assessed for each category. The 405 

main focus of permutation feature importance is the relative importance of the features instead of their absolute values. This 406 

is because the sum of the importances is not necessarily meaningful, given that feature interactions and the non-additive nature 407 

of the method can affect the results. For the CNN model: radar Ze, MDV, and MPL  are identified as the three most important 408 

input features for determining the liquid phase. This aligns with the logic used in threshold-based algorithms by Shupe (Shupe, 409 

2007) for liquid phase identification. For the ice phase, input feature importances are generally lower, likely because the ice 410 

phase can be independently identified using multiple input features. As a result, even when one input feature is missing, the 411 

ice phase can still be accurately classified using the remaining features. The key features for identifying the mixed-phase are 412 

Ze, MDV, and W. For drizzle, liq_driz, and rain, Ze, MDV, and temperature are most important, likely due to the complexity 413 

of distinguishing these phases, requiring multiple measurements. Ze is the primary feature for snow identification, followed by 414 

MDV and temperature, consistent with Shupe (Shupe et al., 2015), where snow identification relied on Ze and temperature. 415 
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The importance of MDV for snow may result from its covariance with Ze. The input feature importances for the other two 416 

models (Figures 8b and 8c) are generally similar to those of the CNN model. Broadly, the feature importances in Figure 8 417 

align with physical intuition and with the logic used by Shupe, (2007), indicating that ML models successfully captured the 418 

relationships between remote sensing measurements and the thermodynamic cloud phases.  419 

3.4 Application to another ARM Site: COMBLE 420 

To assess the generalization capability of the ML models, we applied them at a different ARM Mobile Facility (AMF) 421 

observatory. The ARM Cold-Air Outbreaks in the Marine Boundary Layer Experiment (COMBLE) field campaign deployed 422 

an AMF at a coastal site in Andenes, Norway (69.141° N, 15.684° E, referred as the ‘ANX’ site) from December 2019 to May 423 

2020 (Geerts et al., 2022). The campaign aimed to investigate the relationships between surface fluxes, boundary layer 424 

structure, aerosol properties, cloud and precipitation characteristics, and mesoscale circulations during cold-air outbreaks 425 

(CAOs) over open Arctic waters (Geerts et al., 2022). A key focus was to enhance understanding of thermodynamic cloud 426 

phases and their evolution during CAOs. The deployment at the main site included all remote sensing measurements required 427 

to run the THERMOCLDPHASE VAP, as well as the input features needed for the ML models. However, MPL data was 428 

missing until February 11, 2020. Consequently, the THERMOCLDPHASE VAP between February 11 and May 31, 2020, was 429 

produced for this site shortly after the field campaign and has since been utilized in recent studies to analyse cloud phase 430 

structures over the polar regions (Lackner et al., 2024; Van Weverberg et al., 2023; Xia & McFarquhar, 2024).  431 
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 432 

Figure 9. Figure 9 has the same subplot structure as Figure 3. Figure 9 shows the results of applying the ML models to data 433 

collected at the ANX site in Norway on February 25th, 2020, during the COMBLE campaign. The case day chosen is 434 

experiencing a CAO event. Note at 00:00 UTC in subplot (a) the VAP has unknown pixels, which the ML models are able to 435 

resolve (b, c, d).  436 

We evaluated the models’ ability to classify thermodynamic cloud phases for a CAO event identified on February 25th, 2020. 437 

Figure 9 presents thermodynamic cloud phase classifications from the THERMOCLDPHASE VAP, the three ML model 438 

https://doi.org/10.5194/egusphere-2025-1501
Preprint. Discussion started: 7 May 2025
c© Author(s) 2025. CC BY 4.0 License.



22 

 

predictions, and evaluations of ML model performance against the THERMOCLDPHASE VAP. Convective cloud structures 439 

and production of heavy snowfall during the CAO can be clearly observed from the time-height plot of thermodynamic cloud 440 

phases in Figure 9a. ML model predictions compare well with the THERMOCLDPHASE VAP (Figure 9b-9d). A figure with 441 

the data streams used to create the VAP similar to Figure 1 is available in the supplement (Figure S4). All three models captured 442 

the time period accurately, with ice and snow dominating the ML-classified thermodynamic cloud phases. Interestingly, there 443 

are some “unknown” phase pixels at the beginning of the day from the THERMOCLDPHASE VAP where the static algorithm 444 

was unable to resolve the cloud phase because the phase identification is inconsistent with our understanding of cloud physics 445 

based on past studies. Large Ze and cold temperatures suggest these pixels are snow, yet they exhibit falling velocities 446 

exceeding 2.5 m/s. Snow typically has low terminal velocities due to its small mass density and large surface area. However, 447 

during the CAO event's strong convective conditions, snow velocities may increase significantly in intense downdraft regions. 448 

The three ML models consistently predicted “snow” in this region, which is consistent with surrounding pixels, demonstrating 449 

an advantage of using ML models for cloud phase classifications.  450 

Both the CNN and MLP have high confidence scores that are generally greater than 90% for ice and snow pixels but 451 

significantly lower confidence scores for liquid and mixed-phase pixels. Indeed, it is challenging to reliably distinguish liquid 452 

and mixed-phase pixels from ice phase pixels when they are embedded in ice-dominated clouds (Shupe, 2007; Silber et al., 453 

2021). The RF has lower confidence scores except for ice phase pixels at high altitudes after 12:00 UTC. The histogram plots 454 

in Figures 9i–9k show that all three ML models produce histograms that closely match the VAP, with the MLP and RF models 455 

slightly over-predicting the “liquid” category and under-predicting the “ice” category. The confusion matrices in Figure 9l–9n 456 

confirm that all three ML models predict the dominant ice and snow phases reasonably well, with accuracies exceeding 0.85. 457 

The three models all showed lower accuracy for the liquid phase (<0.7), which is a minority category in this sample. In addition, 458 

both the MLP and RF showed good predictions of the mixed-phase pixels, while the CCN showed a much lower accuracy in 459 

predicting mixed-phase pixels for this day. Overall, the CNN outperformed the MLP and RF models in terms of accuracy 460 

when predicting the dominant categories but performed worse than the other two models when predicting the minority 461 

categories. 462 

Model performance metrics for the entire study period in which the THERMOCLDPHASE VAP was produced at ANX are 463 

reported in Table 3. ANX plots in the same format as those produced for NSA (Figures 4, 5, and 6) are presented in 464 

supplemental Figures S5, S6, and S7. Every performance metric using ANX as a test dataset (accuracy, precision, recall, F1-465 

score, and IOU) is reduced in comparison to NSA (Table 3). The NSA test dataset comprised 12 months of data, and the ANX 466 

dataset comprised 4 months of data (February - May). Comparing the PDFs of confidence scores for the cloud phase predictions 467 

for the three models, differences emerge. The CNN model behaved similarly at both sites, likely because the CNN incorporates 468 

information from neighbouring pixels and because of the prevalence of ice at both locations, and for all phases predictions 469 

peaked at 100% confidence (Figure S5). The RF model also peaks at 100% for all phases except for liquid and liq_driz peaking 470 

at 90% and displaying a secondary local maximum at 40 percent. The MLP diverges the most with only the  PDF of ice 471 
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classification confidence peaking at 100%. The PDFs for all other phases for the MLP model are more symmetrical and peak 472 

between 50 - 60%. In addition, all three models reported higher false negatives for drizzle, liq_driz, and rain (Figure S7). 473 

Comparing frequency distributions of cloud phases, ANX and NSA are similar as they are both high-latitude locations. Ice 474 

accounts for ~60% of all cloud phases detected, followed by mixed, snow, and liquid (Figure S6). 475 

Table 3.  Model performance metrics for the three ML models on the dataset from COMBLE at ANX 476 

Model Accuracy (%) Precision* Recall* F1-score* IOU* 

CNN 92.5 0.841 0.777 0.805 0.69 

MLP 80.4 0.684 0.827 0.725 0.594 

RF 81.1 0.703 0.806 0.726 0.597 

*using a macro average for each output class 477 

4. Data Dropout Experiment (Improving Threshold Algorithm) 478 

One advantage of using machine learning models for thermodynamic phase classification is that, unlike the VAP, they can still 479 

provide classifications in missing data scenarios. To assess model robustness against missing inputs, we tested our models by 480 

systematically removing either a single variable or all variables from a specific instrument to simulate scenarios where the 481 

instrument was offline. We also trained a variant of the U-Net designed to be resilient to missing data by including a layer to 482 

drop-out random input channels with a likelihood of p=0.125 during training, referred to as "CNN-ICD" (input channel 483 

dropouts). The CNN-ICD model was the second-best performing CNN in the ablation study in Section 2.2.3, when all input 484 

channels were used, but the addition of the input channel dropout during training makes it far more robust in missing data 485 

scenarios.  486 

We tested our models on a year’s worth of data in 2021 at the NSA site. For each test, we evaluated IOU score for each cloud 487 

phase type over the year, the overall mean (with respect to phases) IOU score, and the total accuracy. Table 4 shows the results 488 

for the CNN-ICD model. Results for the other models are in the supplement. The two instruments that had the greatest effect 489 

on accuracy were the radiosonde temperature and the radar datastreams. For instance, for 2021, the accuracy of the CNN 490 

dropped from 95 to 88% without temperature data (mean IOU dropped 0.81 to 0.37), and the accuracy of the RF dropped from 491 

86 to 74% (IOU 0.72 to 0.28) (Table S2 and Table S4).  The CNN-ICD model in comparison with temperature dropped from 492 

88% to 85% accuracy and 0.62 to 0.55 IOU, so while its control case performs worse, it is lease affected by data outages. It is 493 

also worthwhile to note how and where the cloud phase classification failed without certain instruments. Dropping the MWR 494 

data had minimal effect on model performance for all four models. However, without the radar mean doppler velocity, the 495 

CNN, for example, had trouble distinguishing rain and drizzle in liquid clouds. This is because Doppler velocity is key for 496 

determining whether a liquid particle is falling (Shupe 2007). Another example is temperature, without which the model has 497 

trouble distinguishing solid from liquid water phases. 498 
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Table 4. Performance of the CNN-ICD model in the data dropout study. 499 

CNN ICD Model Results Intersection over Union (IOU) Score  

Model Missing 

datastream/ 

Instrument 

Liquid Ice Mixed Drizzle Liquid 

Drizzle 

Rain Snow Mean IOU Total 

Accuracy % 

CNN-ICD Control 0.441 0.875 0.530 0.426 0.429 0.849 0.808 0.622 88.4 

CNN-ICD Micropulse Lidar, 

all datastreams 
0.535 0.894 0.555 0.412 0.546 0.844 0.890 0.668 90.2 

CNN-ICD Micropulse Lidar, 

backscatter 
0.467 0.877 0.553 0.362 0.463 0.850 0.860 0.633 88.7 

CNN-ICD Micropulse Lidar, 

linear 

depolarization ratio 

0.469 0.877 0.508 0.407 0.448 0.841 0.819 0.624 88.6 

CNN-ICD Microwave 

Radiometer 
0.436 0.876 0.533 0.438 0.440 0.850 0.802 0.625 88.5 

CNN-ICD Radar, all 

datastreams 
0.180 0.800 0.001 0.103 0.244 0.003 0.204 0.219 76.8 

CNN-ICD Radar, linear 

depolarization ratio 
0.432 0.869 0.525 0.388 0.411 0.849 0.799 0.611 87.9 

CNN-ICD Radar, mean 

doppler velocity 
0.347 0.891 0.374 0.488 0.467 0.694 0.836 0.585 89.2 

CNN-ICD Radar, reflectivity 0.374 0.870 0.445 0.450 0.500 0.770 0.109 0.502 84.3 

CNN-ICD Radar, spectral 

width 
0.459 0.879 0.470 0.600 0.316 0.802 0.873 0.629 88.9 

CNN-ICD Radiosonde 

Temperature 
0.143 0.883 0.367 0.450 0.456 0.788 0.809 0.557 88.5 

Table 4 shows that the CNN-ICD model performs well even with missing data, generally achieving a mean IOU > 0.5 and 500 

accuracy > 75%. We hypothesise that with the addition of the 2D dropout layers, which mimic instrument dropouts, it had 501 

greater elasticity to adapt to missing data and thus will be more robust to these events. When all input fields are available, we 502 

achieved the best results without the addition of these layers however. Interestingly, in some cases the CNN-ICD model has 503 

greater accuracy and IOU score if some of the instrument datastreams are missing, such as the linear depolarization ratio for 504 

the lidar and radar. This could indicate that some of the datastreams give conflicting phase information or add input noise , in 505 

which case their inclusion actually makes the model less robust. We do not see this with the other models however. 506 
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 507 

 508 

Figure 10: Example of how each model responds to missing temperature data from the interpolated sonde on August 15, 2021, 509 

at the NSA site. (a–e) time-height plots of thermodynamic cloud phases from the THERMOCLDPHASE VAP (Ground Truth 510 

VAP), CNN-ICD, CNN, MLP, and RF, respectively; (f–i) thermodynamic cloud phase classifications from the four ML models 511 

when temperature data is dropped out from the input features; (j–m) the differences in thermodynamic cloud phase 512 

classifications between model predictions with and without temperature data for the four ML models.    513 

Figure 10 demonstrates how each model responds to the absence of temperature data from the interpolated sonde on August 514 

15, 2021, at the NSA site. This temperature data was identified as one of the most important input features for all the ML 515 

models in Figure 8. On this day, deep clouds were observed at the beginning and end of the day and low-level clouds during 516 

the middle of the day. Due to elevated surface temperatures, the low-altitude clouds were predominantly composed of warm 517 

classes. This case serves as an excellent example for the data dropout experiment, as it includes all thermodynamic cloud 518 

phases. When all input features are available, the four ML models demonstrate strong performance compared to the 519 

THERMOCLDPHASE VAP (Figures 10a-e). When temperature data are removed, all models show reduced performance 520 

(Figures 10f-i), with the “CNN-ICD” model exhibiting the smallest reduction in performance. It accurately identifies mid- and 521 

high-level cloud phases but misclassifies liquid, drizzle, and rain as ice, mixed-phase, and snow, particularly for low-altitude 522 

cloud pixels at the beginning and end of the day when temperature data are missing (Figure 10f). Interestingly, the “CNN-523 

ICD” model still correctly identifies low-altitude warm cloud classes between 3:00 and 20:00 UTC. The CNN and MLP models 524 

also correctly classify thermodynamic cloud phases for mid- and high-level cloud pixels but frequently misclassify liquid, 525 

drizzle, and rain as ice, mixed-phase, and snow for low-altitude cloud pixels throughout the day (Figures 10g and 10h). In 526 
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contrast, the RF model performs well for low-altitude cloud pixels, correctly identifying their thermodynamic cloud phases, 527 

but it misclassifies ice, mixed-phase, and snow as liquid, drizzle, and rain for mid- and high-level cloud pixels. The responses 528 

of each ML model to the removal of other input features are detailed in different rows in Figures S8 and S9. Overall, the CNN-529 

ICD model performs the best in the absence of data, followed by the CNN and MLP models, while the RF model performs the 530 

worst on this day.              531 

 532 

 533 

Figure 11. An example of how the CNN trained with input channel dropouts (CNN-ICD) responds to different missing input 534 

variables, mimicking data loss in the field for the same case shown in Figure 10. The title of each panel shows the variable or 535 

all variables from a specific instrument that was dropped out. ‘All MPL Var’ and ‘All Radar Var’ represent all lidar variables 536 

and all radar variables were dropped out, respectively.  537 

Figure 11 shows how the CNN-ICD model responds to the removal of different variables for predicting thermodynamic cloud 538 

phases for the same case shown in Figure 10. Consistent with the input feature analysis shown in Figure 8, removing the MPL 539 

, MPL Dep, radar Dep, LWP, and all MPL variables has minimal impact on the performance of the CNN-ICD model. When 540 

Ze is missing, the model sometimes fails to distinguish between liquid and drizzle for low-altitude cloudy pixels throughout 541 

the day and between ice and snow for mid- and high-level cloud pixels at the end of the day (Figure 11c). Without radar W, 542 

the model sometimes fails to identify mixed-phase pixels for mid-level clouds, although they are only present for short periods 543 

in this example (Figure 11e). Dropping out radar MDV causes the model to sometimes fail to distinguish between rain and 544 

drizzle between 3:00 and 6:00 UTC (Figure 11f). Dropping out T causes the model to sometimes fail to distinguish between 545 

ice and liquid at the beginning of the day and between ice and drizzle at the end of the day (Figure 11g). Overall, dropping out 546 

individual radar variables (including Ze, MDV, W), all radar variables simultaneously, or dropping out temperature data had 547 
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the largest effect on predicting thermodynamic cloud phases. This general result is also true for the other ML models for this 548 

case study, which are detailed in Figures S8 and S9. This result shows general agreement with the feature importance results 549 

presented in Section 3.3. 550 

5. Summary and Conclusions 551 

The ARM THERMOCLDPHASE VAP offers vertically resolved cloud thermodynamic phase classifications using the multi-552 

sensor approach developed by Shupe (2007), which combines lidar backscatter and depolarization ratio, radar reflectivity, 553 

Doppler velocity and spectra width, liquid water path, and temperature measurements. This study leveraged multiple years of 554 

the VAP product as the ground truth to train and evaluate three ML models for identifying thermodynamic cloud phases based 555 

on multi-sensor remote sensing data collected at the ARM NSA observatory. The models are a RF, a MLP, and a CNN with a 556 

U-Net architecture. Input features for the three ML models include MPL  and MPL Dep, radar Ze, MDV, W, and Radar Dep, 557 

MWR derived LWP, and radiosonde T. An ablation study was conducted to find the optimal configuration of the CNN model. 558 

Three years of data at the ARM NSA site, from 2018-2020, were used for training and validation, while one year of data, from 559 

2021, was used for testing. The input fields were organized as 3D arrays (time x height x channel), with the channel dimension 560 

containing the nine individual ARM datastream inputs. The seven unique cloud phase classifications produced by the 561 

THERMOCLDPHASE VAP were used as target variables.   562 

The three trained ML models were applied to one year of multi-sensor remote sensing measurements from 2021 to predict 563 

thermodynamic cloud phase (THERMOCLDPHASE-ML). The accuracy of these predictions was evaluated against the outputs 564 

of the THERMOCLDPHASE VAP. Evaluations included a detailed one day case study and year-long statistical assessment 565 

using performance metrics such as categorical accuracy, precision, recall, F1-score, and mean IOU. Among the ML models, 566 

the CNN demonstrated superior performance, achieving the highest categorical accuracy, F1-score, and mean IOU. This 567 

success is likely attributed to its holistic evaluation of input time-height arrays rather than the pixel-by-pixel approach used by 568 

the MLP and RF models. The CNN’s success may also be due to site dependency, as NSA is ice dominated, and this model 569 

best predicts ice. The evaluations were further extended to data from an ARM AMF observatory during the ARM Cold-Air 570 

Outbreaks in the Marine Boundary Layer Experiment (COMBLE) field campaign at a coastal site in Andenes, Norway.     571 

We also demonstrated three possible advantages of using ML models for thermodynamic cloud phase classification, including: 572 

1) ML models provide confidence scores for their predictions, with higher scores indicating greater certainty. Statistical 573 

analysis of one year of ML classification data reveals that predictions for ice, rain, and snow generally exhibit higher 574 

confidence scores, followed by the liquid phase. The mixed, drizzle, and liq_driz phases show lower confidence 575 

scores. Among the three ML models, the CNN produced the highest confidence scores across all thermodynamic 576 

cloud phases. 577 
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2) ML models enable feature importance analysis to identify the input features most influential in determining 578 

thermodynamic cloud phases. Analyzing the calculated permutation feature importances for the three ML models 579 

reveals that radar moments - specifically Ze, MDV, and W - as well as temperature, are the most significant features 580 

for classifying thermodynamic cloud phases. In contrast, input features from lidar measurements and MWRRET LWP 581 

were found to be less influential. 582 

3) ML models can predict thermodynamic cloud phases even when one or more input data set is missing. To evaluate 583 

this capability, we conducted data dropout experiments by systematically removing either a single input variables or 584 

all variables from a specific instrument to simulate scenarios where the instrument was offline. We also trained a 585 

CNN U-NET model with input channel dropouts during training (referred to as " CNN-ICD "), hypothesizing that the 586 

inclusion of channel-wise dropout layers would mimic real instrument dropouts and enhance the model’s ability to 587 

adapt to missing data, thus making the model more robust. Overall, the CNN-ICD model performs better than the 588 

others when input fields are missing, followed by the standard CNN and MLP models, with the RF model performing 589 

the worst. Dropping out radar variables, including radar Ze, MDV, W, and all of them together, as well as dropping 590 

out temperature data, had the largest negative impacts on predicting thermodynamic cloud phases for all models. 591 

We utilized thermodynamic cloud phase classifications from the THERMOCLDPHASE VAP as the ground truth. However, 592 

the VAP, which employs empirical threshold-based algorithms, can misclassify thermodynamic cloud phases (Shupe 2007). 593 

Therefore, we do not expect the trained ML models to produce better thermodynamic cloud phase classifications than the 594 

THERMOCLDPHASE VAP in most cases. Instead, we demonstrated the feasibility of using ML models to predict 595 

thermodynamic cloud phase classifications with accuracy close to the VAP while adding additional information, such as 596 

confidence scores and feature importances. Furthermore, ML models can extend classification to scenarios where some 597 

instruments are offline, which are typically problematic for the VAP, and can produce reasonable classifications in some 598 

specific cases when the VAP algorithm cannot. The ML models demonstrate elasticity in their ability to classify cloud phase, 599 

such as when the VAP was unable to classify snow in the COMBLE case study. Even so, we note that CNNs have limited 600 

interpretability and are less physics-informed than a hand-crafted retrieval. There are other more advanced segmentation 601 

algorithms than U-Nets that could be tested in future studies, e.g., U-Net++ (Zhou et al., 2018) and vision transformers 602 

(Springenberg et al., 2023). Our next step will involve creating a multiple-year, expert-labeled dataset of thermodynamic cloud 603 

phases to train ML models. The goal is to have a ML model that ultimately predicts better thermodynamic cloud phases than 604 

those derived from empirical threshold-based algorithms. It is important to note that the definition of thermodynamic phases 605 

depends on instrument sample volume and detection limit (Korolev & Milbrandt, 2022). The seven thermodynamic cloud 606 

phase categories used in this study are empirical and might not precisely represent true thermodynamic cloud phases in nature. 607 

Therefore, we also plan to explore using unsupervised machine learning schemes for classifying thermodynamic cloud phases, 608 

using the THERMOCLDPHASE data only as a reference of comparison in future work.        609 

  610 
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